Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(9): 4919, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38353946

RESUMO

Expression of concern for 'Microchip-based structure determination of low-molecular weight proteins using cryo-electron microscopy' by Michael A. Casasanta et al., Nanoscale, 2021, 13, 7285-7293, https://doi.org/10.1039/D1NR00388G.

2.
Microsc Microanal ; 29(2): 649-657, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37749713

RESUMO

The nucleocapsid (N) protein is an abundant component of SARS-CoV-2 and a key analyte for lateral-flow rapid antigen tests. Here, we present new structural insights for the SARS-CoV-2 N protein using cryo-electron microscopy (EM) and molecular modeling tools. Epitope mapping based on structural data supported host-immune interactions in the C-terminal portion of the protein, while other regions revealed protein-protein interaction sites. Complementary modeling results suggested that N protein structures from known variants of concern (VOC) are nearly 100% conserved at specific antibody-binding sites. Collectively, these results suggest that rapid tests that target the nucleocapsid C-terminal domain should have similar accuracy across all VOCs. In addition, our combined structural modeling workflow may guide the design of immune therapies to counter viral processes as we plan for future variants and pandemics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Microscopia Crioeletrônica , COVID-19/diagnóstico , Modelos Estruturais
3.
Chembiochem ; 23(17): e202200310, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35789183

RESUMO

Mutations in tumor suppressor genes, such as Tumor Protein 53 (TP53), are heavily implicated in aggressive cancers giving rise to gain- and loss-of-function phenotypes. While individual domains of the p53 protein have been studied extensively, structural information for full-length p53 remains incomplete. Functionalized microprocessor chips (microchips) with properties amenable to electron microscopy permitted us to visualize complete p53 assemblies for the first time. The new structures revealed p53 in an inactive dimeric state independent of DNA binding. Residues located at the protein-protein interface corresponded with modification sites in cancer-related hot spots. Changes in these regions may amplify the toxic effects of clinical mutations. Taken together, these results contribute advances in technology and imaging approaches to decode native protein models in different states of activation.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Microcomputadores , Mutação , Neoplasias/diagnóstico por imagem , Neoplasias/genética , Proteína Supressora de Tumor p53/química
4.
Nanoscale ; 13(15): 7285-7293, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33889923

RESUMO

Interest in cryo-Electron Microscopy (EM) imaging has skyrocketed in recent years due to its pristine views of macromolecules and materials. As advances in instrumentation and computing algorithms spurred this progress, there is renewed focus to address specimen-related challenges. Here we contribute a microchip-based toolkit to perform complementary structural and biochemical analysis on low-molecular weight proteins. As a model system, we used the SARS-CoV-2 nucleocapsid (N) protein (48 kDa) due to its stability and important role in therapeutic development. Cryo-EM structures of the N protein monomer revealed a flexible N-terminal "top hat" motif and a helical-rich C-terminal domain. To complement our structural findings, we engineered microchip-based immunoprecipitation assays that led to the discovery of the first antibody binding site on the N protein. The data also facilitated molecular modeling of a variety of pandemic and common cold-related coronavirus proteins. Such insights may guide future pandemic-preparedness protocols through immuno-engineering strategies to mitigate viral outbreaks.


Assuntos
Proteínas do Nucleocapsídeo de Coronavírus/química , Microscopia Crioeletrônica , SARS-CoV-2/química , Peso Molecular , Fosfoproteínas/química , Estrutura Secundária de Proteína
5.
Anal Chem ; 92(23): 15558-15564, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33124814

RESUMO

The tumor suppressor protein TP53 (p53) plays a multifaceted role in all cells of the human body. Mutations in the TP53 gene are often involved in cancer induction and disease progression. Despite its important role in health and development, structural information for p53 remains incomplete. Here, we present a microchip-based technology to facilitate structural studies of p53 assemblies derived from human cancer cells. These devices do not introduce foreign sequences to the p53 gene and maintain naturally occurring post-translational modifications. Using cryo-electron microscopy, structures for the p53 monomer (∼50 kDa) and tetramer (∼200 kDa) were resolved to ∼4.8 and ∼7 Å, respectively. These structures revealed new insights for flexible regions of p53 along with biologically relevant ubiquitination sites. Collectively, the convergence of nanotechnology tools and structural imaging builds a strong framework to understand the oncogenic impact of p53 in human tissues.


Assuntos
Doença , Procedimentos Analíticos em Microchip , Proteína Supressora de Tumor p53/química , Linhagem Celular Tumoral , Humanos , Multimerização Proteica , Estrutura Quaternária de Proteína , Proteína Supressora de Tumor p53/metabolismo
6.
Small ; 15(21): e1900918, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30963664

RESUMO

The fight against human disease requires a multidisciplinary scientific approach. Applying tools from seemingly unrelated areas, such as materials science and molecular biology, researchers can overcome long-standing challenges to improve knowledge of molecular pathologies. Here, custom-designed substrates composed of silicon nitride (SiN) are used to study the 3D attributes of tumor suppressor proteins that function in DNA repair events. New on-chip preparation strategies enable the isolation of native protein complexes from human cancer cells. Combined techniques of cryo-electron microscopy (EM) and molecular modeling reveal a new modified form of the p53 tumor suppressor present in aggressive glioblastoma multiforme cancer cells. Taken together, the findings provide a radical new design for cryo-EM substrates to evaluate the structures of disease-related macromolecules.


Assuntos
Microscopia Crioeletrônica/métodos , Linhagem Celular Tumoral , Humanos , Imageamento Tridimensional , Substâncias Macromoleculares/química , Compostos de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...